

Q.1 (3.00) - Durante um experimento de análise de soluções ácidas, um químico preparou uma solução aquosa de ácido clorídrico com concentração 2×10^{-3} mol L⁻¹ usando água destilada em um ambiente controlado a 25 °C. Dados: log 2 = 0,3.

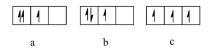
Considerando que para o ácido clorídrico a dissociação é completa, qual o valor do pOH da solução?

- **a**) () 9,70
- **b**) () 12,70
- **c**) () 2,70
- **d**) () 11,30
- **e**) () 2,00

Q.2 (3.00) - No polo industrial de Barcarena–PA, um engenheiro químico analisou três óxidos não identificados, representados por $\Delta O, \Psi O$ e ΩO , presentes em resíduos da produção de alumina (Al₂O₃) a partir da bauxita e realizou testes com eles. Algumas informações sobre os testes realizados:

Óxidos	Em presença de H2O	Em presença de HCl	Em presença de NaOH
Δ0	Produz A(OH)2	Produz ΔCl ₂ + H ₂ O	Não reage
ΨО	Não reage	Produz ΨCl ₂ + H ₂ O	Produz Na ₂ ΨO ₂ +
			H ₂ O
Ω 0	Não reage	Não reage	Não reage

Considerando as informações sobre os testes realizados, qual a correta classificação quanto à


natureza química dos óxidos $\Delta O, \Psi O$ e $\Omega O,$ respectivamente?

- a) () Óxido anfótero, óxido básico e óxido neutro
- **b**) () Óxido básico, óxido anfótero e óxido neutro
- \mathbf{c}) () Óxido básico, óxido ácido e óxido indiferente
- d) () Óxido básico, óxido anfótero e óxido ácido
- ${f e}$) () Óxido ácido, óxido anfótero e óxido básico

Q.3 (3.00) - A cromatografia em papel é um método de separação de mistura de corantes em tinta, que usa duas fases: uma estacionária (o papel, com a água retida nas fibras de celulose) e uma móvel (um solvente orgânico). Ao aplicar uma amostra de tinta ou outra substância no papel e colocar a ponta em um solvente, a fase móvel sobe por capilaridade, arrastando os componentes da amostra. O que explica o mecanismo de separação nesta técnica é a diferença

- a) () de pontos de ebulição dos corantes, pois o corante de maior massa molecular é sempre menos volátil.
- b) () de solubilidade na fase móvel e afinidade com a fase estacionária, sendo que os

- mais solúveis e com menor afinidade com o papel se movem mais rapidamente.
- c) () no tamanho das moléculas dos corantes, sendo que as maiores podem ser deslocadas com maior velocidade na fase estacionária.
- d) () de densidade entre os corantes, haja vista que a substância mais densa ocupa menor volume.
- e) () da composição e da polaridade da fase móvel, quando cada corante repele fortemente a esta e adere de maneira muito mais efetiva à fase estacionária, como a água retida na celulose.
- Q.4 (1.25) Um químico ambiental monitora a concentração de mercúrio em um lago contaminado. As análises mostram que a concentração de Hg nos organismos fitoplanctônicos é de 0,001 micrograma por kg. No entanto, nos peixes predadores que se alimentam de outros peixes, a concentração chega a 10 micrograma por kg. Esse aumento exponencial da concentração do poluente ao longo da cadeia alimentar é um fenômeno crítico na toxicologia ambiental. Qual é o termo químico-biológico que descreve esse processo de acumulação em níveis tróficos superiores?
- a) () Volatilização
- **b**) () Bioacumulação
- c) () Degradação seletiva
- d) () Biomagnificação
- e) () Eutrofização
- **Q.5 (5.40)** Os diagramas a seguir mostram a distribuição de três elétrons em três orbitais do tipo p.

A partir da análise dos diagramas, assinale (V) para os itens verdadeiros e (F) para falsos.

() A distribuição eletrônica em **b** está incorreta, pois viola o princípio de exclusão de Pauli

- ao ter dois elétrons com spins iguais no mesmo orbital.
- () A distribuição eletrônica em **a** está incorreta, pois viola o principio da exclusão de Pauli e não respeita a regra de Hund.
- () A distribuição eletrônica em ${\bf c}$ está correta, mas não é a mais estável, pois preferencialmente os elétrons no subnível ${\bf p}$ devem estar emparelhados.
- () A distribuição eletrônica em **b** está correta, pois os elétrons nos três orbitais **p** são distribuídos de maneira a minimizar a repulsão entre eles, conforme o princípio de Pauli.
- () A distribuição eletrônica em ${\bf b}$ é energeticamente mais favorável do que em ${\bf c}$, porque a configuração com dois elétrons emparelhados no primeiro orbital é mais estável.
- () A distribuição apresentada em ${\bf c}$ está correta, mas ela poderia ser mais estável se os elétrons estivessem emparelhados em dois orbitais.
- () A distribuição eletrônica em **a** está incorreta porque, ao ter dois elétrons com o mesmo spin no mesmo orbital, ela viola o princípio de Pauli.
- () A distribuição eletrônica em **c** está correta, pois segue a regra de Hund, já que distribui os elétrons de forma a minimizar a repulsão.

 ${\bf A}$ sequência correta, de cima para baixo, é:

- **a**) () F, F, V, F, V, V, F, F
- **b**) () F, V, F, F, F, F, F, V
- c) () V, F, F, V, F, V, F, V
- d) () V, F, F, V, F, F, V, F
- e) () F, V, F, F, F, F, V, V
- $\bf Q.6$ (3.00) Analise as afirmações sobre estudo, classificação, propriedades e preparo das Soluções. I. Se a 80 °C a solubilidade do sal X é 80 g/100 g $\rm H_2O$ e a mistura homogênea contém 90 g/100 g $\rm H_2O$, esse sistema é uma dispersão coloidal.

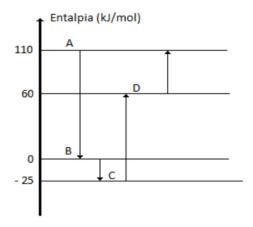
II. Em soluções sólidas, como latão (Cu + Zn), o solvente é o metal mais abundante em

mol na liga.

III. O preparo de 250 mL de solução 2,0 mol ${\rm L^{-1}~de~H_2SO_4~requer~49,0~g~deste~ácido}.$

IV. A grandeza que é mantida constante após a diluição de uma solução é a massa do solvente.

V. O cruzamento das Curvas de Solubilidade de duas substâncias distintas em um gráfico de solubilidade (g/100g $\rm H_2O$ x Temperatura) indica a temperatura em que ambas apresentam igual concentração molar.


Considerando as afirmações apresentadas, estão corretas somente

- **a**) () II e III.
- **b**) () I, IV e V.
- **c**) () I e IV.
- **d**) () II, III e V.
- e) () IV e V.

Q.7 (1.25) - A constante de equilíbrio em termos de concentração (Kc) para a reação N_2O_4 (g) $\rightleftharpoons 2~NO_2$ (g) a 298 K possui o valor igual a $4.0 \times 10^{-3}~\text{mol L}^{-1}$. Sabendo que a reação ocorre em recipiente fechado de volume constante e a constante universal dos gases ideais R=0.082 atm L mol⁻¹ K⁻¹, determine o valor aproximado da constante de equilíbrio em termos de pressão (Kp) para essa reação.

- **a**) () 5.0×10^{-1}
- **b**) () 4.2×10^{-1}
- **c**) () 1.0×10^{-1}
- **d**) () 1.6×10^{-1}
- **e**) () 3.0×10^{-1}

Q.8 (3.00) - As variações de entalpia relacionadas às reações químicas podem ser representadas por meio de gráficos. Veja a seguir um exemplo de gráfico com as substâncias genéricas A, B, C e D e seus respectivos valores de conteúdos energéticos sob pressão constante, indicados em kJ/mol.

Durante atividades experimentais, um químico constatou que a utilização de 2,5 mols de determinado composto resulta em uma variação de entalpia de +212,5 kJ.

Considerando as informações apresentadas, a transformação utilizada nas atividades experimentais corresponde à equação química

- \mathbf{a}) () $\mathbf{A} \to \mathbf{B}$.
- **b**) () $C \rightarrow D$.
- \mathbf{c}) () $\mathbf{B} \to \mathbf{C}$.
- \mathbf{d}) () $\mathbf{D} \to \mathbf{A}$.
- \mathbf{e}) () D \rightarrow C.

Q.9 (5.40) - Uma solução ideal foi preparada dissolvendo-se 40,0 g de cloreto de sódio em 200,0 g de água. Outra solução ideal foi preparada pela dissolução de 60,0 g de nitrato de potássio em 300,0 g de água. Considere: Constante crioscópica da água kc = 1,86 °C kg mol⁻¹;

Constante ebuliométrica da água ke=0,512 °C kg mol $^{-1}$;

Fator de van't Hoff i=2 para ambas as soluções.

Qual alternativa apresenta uma afirmação INCORRETA?

- a) () A molalidade da solução de cloreto de sódio é 3,42 mol kg $^{-1}$, enquanto a molalidade da solução de nitrato de potássio é 1,98 mol kg $^{-1}$.
- **b**) () A temperatura de ebulição da solução de cloreto de sódio é igual a 103,5 °C.

- c) () A temperatura de soli dificação da solução de nitrato de potássio é igual a -7,37 °C.
- d) () O potencial químico do solvente na solução é maior que o potencial químico do solvente puro.
- e) () Uma solução ideal é definida como sendo aquela que obedece à lei de Raoult em todo o intervalo de concentrações.

Q.10 (5.40) - Em laboratórios de síntese orgânica, utilizam-se frequentemente atmosferas de nitrogênio (N_2) para conduzir reações em fase gasosa. Por exemplo, em estudos de cinética radicalar ou na síntese de compostos organoclorados, o gás cloro (Cl₂) pode ser diluído em N₂, que é um gás inerte, para controlar a pressão total e evitar reações secundárias com oxigênio ou umidade. Em experimentos típicos, uma mistura gasosa formada por N_2 (g) e Cl_2 (g) é colocada em um recipiente fechado sob pressão de 700 mmHg. Nessas condições e na presença de luz, ocorre a reação de primeira ordem de decomposição do Cl₂ conforme a equação: Cl₂ (g) $\rightarrow 2$ Cl (g). Dado: lei de velocidade de primeira ordem integrada: $p_f = p_i \times e^{-kt}$, sendo que p_f é a pressão final, p_i é a pressão inicial, k é a constante cinética e t é o tempo.

Se a pressão total após 20 min é 760 mmHg e após 40 min é 800 mmHg, qual o valor da constante cinética (k) da decomposição do gás cloro?

- $a) () 0.0500 min^{-1}$
- **b**) () $0,406 \text{ min}^{-1}$
- **c**) () 0,0406 min⁻¹
- **d**) () 0,0203 min⁻¹
- e) () 0,0135 min⁻¹

Q.11 (5.40) - Considere a reação química entre 136,0 g de ácido clorídrico e 200,0 g de carbonato de cálcio, ocorre a formação de cloreto de cálcio, gás carbônico e água, conforme equação química não balanceada. CaCO $_3$ (s) + HCl (aq) \longrightarrow CaCl $_2$ (aq) + CO $_2$ (g) + H $_2$ O (l)

Sabendo que reação possui rendimento de 100 %, determine o reagente limitante e a quantidade aproximada de gás carbônico, em gramas, produzida na reação.

- a) () O reagente limitante é o HCl, e a quantidade de ${\rm CO_2}$ formada é de 41 g.
- b) () O reagente limitante é o HCl, e a quantidade de ${\rm CO_2}$ formada é de 82 g.
- ${\bf c})$ () O reagente limitante é o CaCO $_3,$ e a quantidade de CO $_2$ formada é de 82 g.
- d) () O reagente limitante é o CaCO $_3$, e a quantidade de CO $_2$ formada é de 22,4 g.
- e) () O reagente limitante é o $CaCO_3$, e a quantidade de CO_2 formada é de 41 g.

Q.12 (3.00) - A acidificação de lagos devido à chuva ácida pode ser reduzida pela presença de tampões naturais, como o sistema ácido carbô nico/bicarbonato. Em um lago com esse tampão, verificou-se uma concentração de $\rm H_2CO_3$ de 0,010 mol $\rm L^{-1}$ e de $\rm HCO_3^-$ de 0,050 mol $\rm L^{-1}$. Considerando o pKa = 6,35 para o ácido carbônico e que $\rm 10^{0,70} = 5,00$, determine o valor mais próximo do pH da água desse lago.

- **a**) () 6,80
- **b**) () 5,65
- **c**) () 8,00
- **d**) () 7,05
- e) () 6,35

Q.13 (5.40) - Uma solução aquosa é preparada dissolvendo-se 25,0 g de ácido acético (CH₃COOH) em 200,0 g de água a 25 °C. Considere que a densidade da solução resultante é igual a 1,01 g cm⁻³ e a densidade do ácido acético puro é igual a 1,05 g cm⁻³. A partir da interpretação dessas informações, é **INCORRETO** afirmar que a

- ${f a}$) () fração molar do ácido acético na solução é de 0,0361.
- **b**) () porcentagem em massa (m/m) do ácido acético na solução é de 11,11~%.

- c) () porcentagem em massa por volume (m/v) do ácido acético na solução é de 11,22~%.
- d) () porcentagem em volume (v/v) do ácido acético na solução é de 10,63 %.
- e) () molalidade da solução é de $2,08 \text{ mol kg}^{-1}$.

Q.14 (5.40) - Em simulações sobre condições de vida humana em um determinado planeta, pesquisadores estudam como desenvolver cápsulas flutuantes destinadas à coleta de dados em lagos de água doce. O material utilizado na fabricação dessas cápsulas deve satisfazer integralmente todos os critérios de adequação descritos a seguir:

Resistir ao calor de até 125 °C sem fundir.

Manter integridade na água (solubilidade \leq 0,10 g/100 mL em 24 h).

Flutuar em água com densidade de 1,00 g/cm³.

Ter melhor distribuição de massa em um mesmo volume.

Sofrer menos deformação ao aquecer.

Analise algumas das propriedades de cinco materiais hipotéticos (X, Y, Z, W e K) disponíveis e que serão testados durante as pesquisas.

Propriedades dos materiais disponíveis para testes, medidas a 1 atm.

Material	Temperatura de fusão (°C)	Solubilidade (g/100 mL)	Massa específica (g/cm³)	Coeficiente de dilatação térmica (10 ⁻⁵ °C ⁻¹)
X	127	0,04	0,98	1,4
Y	129	0,06	0,97	1,5
Z	128	0,02	0,99	1,6
W	126	0,03	0,99	1,2
K	125	0,10	0,97	1,4

Qual material deve ser selecionado, considerando todos os critérios de adequação?

- a) () Material X
- **b**) () Material W
- c) () Material Y
- d) () Material K
- e) () Material Z

Q.15 (1.25) - Considere a reação de síntese do metanol a partir de monóxido de carbono e hidrogênio, de acordo com a equação química não balanceada: $CO(g) + H_2(g) \rightleftharpoons CH_3OH(g)$ A reação ocorre a 300 °C e 100 atm para maximizar a produção de metanol. Suponha que, no processo industrial, repentinamente a pressão caia para 20 atm, mantendo-se a temperatura constante.

De acordo com o princípio de Le Chatelier, o que ocorrerá com o deslocamento do equilíbrio e a produção de metanol após essa queda de pressão?

- a) () O equilíbrio não sofrerá alteração, pois a pressão não tem efeito sobre o sistema.
- b) () O equilíbrio se deslocará para a direção dos produtos (direita), aumentando a produção de metanol.
- c) () O equilíbrio se deslocará para a direção dos reagentes (esquerda), diminuindo a produção de metanol.
- d) () O equilíbrio se deslocará para a direção dos produtos (direita), mas a produção de metanol será insignificante devido a diminuição da pressão.
- e) () O equilíbrio se deslocará para a direção dos reagentes (esquerda), mas a produção de metanol será maior devido à redução da pressão.

Q.16 (1.25) - Uma mistura gasosa ideal é composta por 2,0 mols de oxigênio (O_2) , 3,0 mols de nitrogênio (N_2) e 1,0 mol de dióxido de carbono (CO_2) , em um recipiente de 10 dm³ a 27 °C. Dados:

Massa molar dos gases (g mol⁻¹): $N_2 = 28$; $O_2 = 32$; $CO_2 = 44$.

Constante universal dos gases ideais: $R=0.082~L~atm~mol^{-1}~K^{-1}.$

Relação entre escalas termométrica: t / °C = T / K - 273

Considerando que o comportamento dos gases seja ideal, determine a pressão total da mis-

tura.

- **a**) () 15,30 atm
- **b**) () 13,45 atm
- **c**) () 14,76 atm
- **d**) () 12,35 atm
- **e**) () 16,15 atm
- $\mathbf{Q.17}$ (5.40) A entalpia de vaporização (ΔH_{VAP}) é a energia necessária para vaporizar 1 mol de líquido sob pressão constante. A de energia livre de Gibbs para vaporização é calculada por $\Delta G_{VAP} = \Delta H_{VAP} T\Delta S_{VAP}$, em que a entropia de vaporização (ΔS_{VAP}) reflete o aumento de desordem ao passar da fase condensada para a fase gasosa. No ponto de ebulição, a energia térmica fornecida ao sistema entra na forma de calor latente e, assim, estabelece-se o equilíbrio entre as fases líquida e gasosa. Neste contexto, determine o valor da variação de entropia para o processo de vaporização de um líquido, cuja entalpia de vaporização é 24,64 kJ mol⁻¹ e o seu ponto de ebulição é de 35 $^{\rm O}$ C.
- **a**) () $7.04 \text{ J K}^{-1} \text{ mol}^{-1}$
- **b**) () 704 J K⁻¹ mol⁻¹
- **c**) () 2,464 J K⁻¹ mol⁻¹
- **d**) () 80 J K⁻¹ mol⁻¹
- **e**) () 24,64 K J⁻¹ mol⁻¹
- Q.18 (3.00) Em um laboratório de controle de qualidade (LCQ), foi realizada uma titulação para determinar a concentração de ácido fosfórico em uma amostra de fertilizante líquido. A titulação foi realizada com 15,0 mL de solução padrão de hidróxido de sódio 0,2 mol L⁻¹ consumindo 25,0 mL da solução ácida. Considerando que o ácido fosfórico sofreu ionização total, calcule a concentração deste ácido na amostra de fertilizante analisada.
- a) () $2 \times 10^{-2} \text{ mol } L^{-1}$
- **b**) () $1 \times 10^{-3} \text{ mol } L^{-1}$
- **c**) () $4 \times 10^{-2} \text{ mol L}^{-1}$
- **d**) () $1 \times 10^{-2} \text{ mol } L^{-1}$
- e) () $1 \times 10^{-4} \text{mol L}^{-1}$

- Q.19 (3.00) Em um laboratório de análise ambiental, uma amostra de água foi coletada em um rio contaminado com metais pesados. Foi constatado que o nível de cátion cádmio na amostra é de 5×10⁻³ g de Cd²⁺ por 1,0 dm³ de água. Com base nas informações, calcule a concentração do cátion cádmio, em partes por milhão, na água desse rio contaminado.
- **a**) () 5,0 ppm.
- **b**) () 5×10^{-1} ppm.
- **c**) () 50,0 ppm.
- **d**) () 5×10^{-3} ppm.
- **e**) () 5×10^{-2} ppm.
- Q.20 (3.00) Uma mistura heterogênea formada por areia, água, óleo vegetal, álcool etílico (etanol), sulfato de cobre(II) (CuSO₄), sal de cozinha (NaCl) dissolvido e açúcar (sacarose) também dissolvido foi entregue a um grupo de alunos em uma prática de laboratório. O objetivo era realizar a separação e purificação de todos os componentes usando técnicas laboratoriais adequadas e as vidrarias apropriadas para cada etapa. Considerando as informações fornecidas, assinale a alternativa que apresenta a sequência correta de separação com os principais materiais utilizados:
- a) () Separação manual (espátula) → filtração (funil de Büchner) → sublimação (vidro de relógio) → decantação (tubo de ensaio) → fusão fracionada (cápsula de porcelana)
- b) () Filtração simples (funil comum e papel filtro) →evaporação (balão de fundo chato) → centrifugação (tubo de centrífuga) → extração líquido-líquido (funil de separação) → recristalização (béquer)
- c) () Filtração simples (funil comum e papel filtro) → decantação (funil de separação)
 → evaporação (cápsula de porcelana) → destilação simples (balão de destilação e condensador) → cristalização fracionada (Erlenmeyer)

- d) () Filtração simples (funil comum e papel fi ltro)→decantação (funil de separação)→ destilação simples (balão de destilação e condensador)→evaporação (cápsula de p orcelana)→cristalização fracionada (Erlenmeyer)
- e) () Decantação (funil de separação)→filtraç ão simples (funil e papel filtro)→evapo ração (placa de Petri)→destilação fracionada (balão e coluna)→recristalização (proveta)

 ${\bf Q.21}$ (1.25) - A combustão de hidrocarbonetos é um processo essencial para a geração de energia em motores de combustão interna, como os usados em automóveis, e em usinas termelétricas. A gasolina, principal combustível utilizado em carros, é composta principalmente de hidrocarbonetos como o hexano (${\rm C_6H_{14}}$), que ao ser queimado no motor, reage com o oxigênio da atmosfera, gerando energia para movimentar o veículo. A reação de combustão completa do hexano ocorre de acordo com a seguinte equação química:

$$2~{\rm C_6 H_{14~(l)}}~+~19~{\rm O_{2~(g)}}~~12~{\rm CO_{2~(g)}}~+~14~{\rm H_2O_{(g)}}$$

Essa reação, embora fundamental para a produção de energia, também contribui para a emissão de dióxido de carbono (CO_2) , um gás de efeito estufa, além de partículas e outros poluentes. Portanto, entender as quantidades de reagentes e produtos envolvidos na combustão é crucial tanto para a eficiência energética quanto para a mitigação de impactos ambientais.

Considere a constante de Avogadro igual a $6.02 \text{ x} 10^{23} \text{ mol}\acute{\text{e}}$ culas mol^{-1} .

Com base no texto, analise as afirmações a seguir sobre a reação de combustão do hexano.

I. Se 178,2 g de hexano forem completamente que
imados, a quantidade de ${\rm CO_2}$ formada será 438,7 g.

II. Para cada mol de hexano que
imado, formam-se 6 mols de ${\rm CO_2}$ e 7 mols de ${\rm H_2O}$, o que implica que a quantidade de ${\rm CO_2}$ formada será

inversamente proporcional ao número de mols de hexano queimados.

III. Se 91,5 mols de hexano for queimado, a quantidade de moléculas de $\rm CO_2$ formadas será 9,52 x $\rm 10^{22}$ moléculas.

IV. Para a combustão completa de 172 g de hexano, a quantidade de moléculas de ${\rm H_2O}$ formada será $8{,}43{\times}10^{24}$ moléculas de água.

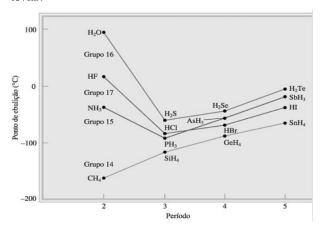
V. Para que a combustão de 0,865 mols do hexano seja completa, é necessário fornecer exatamente 184,07 L de $\rm O_2$, na CNTP, garantindo a formação estequiométrica de $\rm CO_2$ e $\rm H_2O$.

Assinale a alternativa correta.

- a) () Apenas as afirmativas I, II e III estão corretas.
- **b**) () Todas as afirmativas estão corretas.
- c) () Apenas as afirmativas II, III e IV estão corretas.
- d) () Apenas as afirmativas I, II e V estão corretas.
- e) () Apenas as afirmativas IV e V estão corretas.

Q.22 (1.25) - A energia de ativação de uma reação química pode ser drasticamente diminuída por meio do uso de um catalisador, aumentando a rapidez da reação. Considere que a reação genérica de primeira ordem, $\mathbf{A} + \mathbf{B} \rightarrow \mathbf{A}\mathbf{B}$ a temperatura de 1000 K, é realizada duas vezes, uma vez sem catalisador e outra com catalisador apropriado. Dados: equação de Arrhenius (forma logarítmica): $\ln(k) = \ln(A) - \left(\frac{Ea}{RT}\right)$, em que k é a constante cinética na temperatura T, Ea é a energia de ativação, R (constante universal dos gases) = 8,314 J mol⁻¹ K⁻¹ e A é o fator de frequência.

Levando em conta que o fator de frequência não se altera com a catálise, que a ação do catalisador diminui a energia de ativação da reação em 101,5 kJ mol⁻¹ e que a temperatura permaneceu constante, quantas vezes, aproximadamente, a velocidade da reação é aumentada?


a) () 2.0×10^5

- **b**) () 4.2×10^5
- **c**) () 3.5×10^5
- **d**) () 8.0×10^5
- **e**) () 1.2×10^4

Q.23 (1.25) - Uma solução A foi preparada dissolvendo-se 20,0 g de NaCl (M = 58,5 g mol⁻¹) em 500,0 mL de água. Outra solução B foi preparada dissolvendo-se 30,0 g de KCl (M = 74,5 g mol⁻¹) em 250,0 mL de água. Uma alíquota de 25,0 mL da solução A foi misturada a uma alíquota de 30,0 mL da solução B, adicionando-se água destilada até o volume atingir 100,0 mL. Baseado nas informações do texto, determine a concentração, em mol L⁻¹, de íons cloreto (Cl⁻) na solução final.

- **a**) () 0,654
- **b**) () 0,285
- **c**) () 0,413
- **d**) () 0,348
- e) () 0,517

Q.24 (3.00) - A análise do gráfico, que ilustra os pontos de ebulição dos hidretos dos Grupos 14 a 17, revela tendências e anomalias significativas.

A anomalia mais proeminente é o ponto de ebulição excepcionalmente elevado da água (H_2O) em comparação não apenas com os hidretos do Grupo 16, mas também com a amônia (NH_3) e o fluoreto de hidrogênio (HF). Considerando a eletronegatividade (F>O>N) e a estrutura molecular, qual das seguintes alternativas apresenta a justificativa mais completa e

precisa para o fato de o ponto de ebulição da água ser o mais alto entre todas as outras substâncias representadas no gráfico?

- a) () A massa molar da água (18 g mol⁻¹) é ligeiramente menor que a do fluoreto de hidrogênio (20 g mol⁻¹), o que permite que as moléculas de água se movam mais livremente e formem uma estrutura intermolecular mais estável e difícil de romper.
- b) () Embora a ligação H-F seja mais polarizada que a ligação H-O, cada molécula de água é capaz de formar, em média, uma rede com até quatro ligações de hidrogênio (duas como doadora e duas como receptora), enquanto cada molécula de HF forma, em média, apenas duas. Essa rede tridimensional mais extensa na água requer mais energia para ser desfeita.
- c) () A molécula de água possui dois pares de elétrons não ligantes, o dobro do fluoreto de hidrogênio, o que gera uma repulsão intermolecular maior e, consequentemente, exige mais energia para afastar as moléculas durante a ebulição.
- d) () A geometria angular da molécula de água resulta em um momento de dipolo resultante maior do que o da molécula linear de HF, intensificando as interações dipolo-dipolo a ponto de superar a força das ligações de hidrogênio no HF.
- e) () O oxigênio é o elemento mais eletronegativo da tabela periódica, o que torna as ligações de hidrogênio na água significativamente mais fortes do que as do HF e NH₃, exigindo mais energia para serem rompidas.
- $\mathbf{Q.25}$ (5.40) Considere as substâncias ácido acético (CH₃COOH), amoníaco (NH₃) e suas respectivas concentrações e volumes para preparação das soluções: Prepara-se uma solução de

ácido acético a partir de 50.0 mL de uma solução 0.100 mol L^{-1} , diluída até 100.0 mL.

Prepara-se uma solução de amoníaco a partir de 100,0 mL de uma solução 0,750 mol L^{-1} , diluída até 200,0 mL.

Após as diluições, as soluções são misturadas completamente. A reação ácido-base entre o ácido acético e o amoníaco ocorre até o equilíbrio é representada pela seguinte equação química:

$$\begin{array}{ccccccccc} CH_{3}COOH & _{(aq)} & + & NH_{3} & _{(aq)} & \rightleftharpoons \\ CH_{3}COO^{-} & _{(aq)} + & NH_{4} ^{+} & _{(aq)} & \end{array}$$

Dados: Ka (CH₃COOH) = 1.8×10^{-5} ; Kb (NH₃) = 1.8×10^{-5} ; Kw = 1.0×10^{-14}

Considerando as informações fornecidas e os conceitos de equilíbrio ácido-base, pode-se inferir que o valor do

- a) () pH \cong 7,00 e o sal formado equilibra completamente $\rm H_3O^+$ e OH-, resultando em uma solução totalmente neutra.
- b) () pH \cong 11,34 e é causado pelo excesso de NH $_3$ após a reação junto à hidrólise do sal.
- c) () pH \cong 3,26 porque o excesso de CH₃COOdetermina o caráter básico da solução; a hidrólise do sal é praticamente cancelada.
- d) () pOH \cong 3,60 e o excesso de NH $_3$ forma um tampão básico, após a reação, e a hidrólise do sal é desprezível.
- e) () pOH \cong 4,74, com o ácido acético em excesso formando um tampão levemente ácido após a reação.
- **Q.26 (5.40)** Uma amostra de 4,0 g de ferro impuro foi dissolvida em 50 mL de ácido clorídrico 4,0 mol L⁻¹ ,produzindo cloreto ferroso e hidrogênio, conforme equação química não balanceada a seguir.

$$\mathrm{Fe}_{\;\mathrm{(s)}} + \mathrm{HCl}_{\;\mathrm{(aq)}} \quad \mathrm{FeCl}_{2}_{\;\mathrm{(aq)}} + \mathrm{H}_{2}_{\;\mathrm{(g)}}$$

Após essa reação, o excesso de ácido clorídrico foi neutralizado por 40 mL de NaOH 2,0 mol L⁻¹, conforme equação química balanceada a seguir.

$$NaOH_{(aq)} + HCl_{(aq)} NaCl_{(aq)} + H_2O_{(l)}$$

Analisando o resultado e levando em consideração que as reações tenham rendimento de 100%, qual a porcentagem de pureza da amostra analisada?

- **a**) () 84%
- **b**) () 75%
- **c**) () 60%
- **d**) () 98%
- **e**) () 90%

Q.27 (3.00) - Um experimento a 458 °C envolve a decomposição de 1,00 mol de iodeto de hidrogênio em um recipiente fechado de 5,00 L, com constante de equilíbrio químico em termos de concentração igual a $2,06 \times 10^{-2}$, conforme representado pela seguinte equação química: 2 $\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g)$

Considere: $1,44^2 = 2,06$

Quais os valores aproximados das concentrações, em mol L^{-1} , de HI(g), $H_2(g)$ e $I_2(g)$, respectivamente, depois de estabelecido o equilíbrio químico na temperatura do experimento?

- **a**) () 0,120; 0,0400; 0,0400
- **b**) () 0,194; 0,0028; 0,0028
- **c**) () 0,776; 0,1118; 0,1118
- **d**) () 0,013; 0,0933; 0,0933
- e) () 0,155; 0,0224; 0,0224

Q.28 (5.40) - A análise dos espectros do hidrogênio impulsionou a ciência, exigindo que pesquisadores no início do século XX revissem a descrição da matéria para considerar a dualidade onda-partícula, o que revolucionou a compreensão da Química. A equação de Schrödinger, principal contribuição desse cientista, permite calcular a função de onda de uma partícula. Para uma partícula com massa m que se move em uma dimensão, a equação é:

$$- \frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V(x) \psi = E \psi$$

A adequada interpretação desta equação e o entendimento da dualidade onda-partícula permitem inferir que

- a) () o termo " $V(x)\Psi$ " corresponde à energia cinética da partícula ${\bf m}$.
- b) () uma partícula atua como uma onda e qualquer comprimento de onda é possível no sistema.
- c) () a forma simplificada da equação de Schrödinger é " $H\Psi+V\left(x\right) \Psi=E\Psi$ ".
- d) () o termo " $d^2\Psi/dx^2$ " pode ser considerado uma medida da curvatura da função de onda.
- e) () a densidade de probabilidade de uma partícula estar em uma determinada posição é proporcional à função de onda nesse ponto.

Q.29 (3.00) - A teoria protônica de Brönsted-Lowry (1923) é bastante utilizada para explicar as reações ácido-base em sistemas aquosos. Segundo esta teoria, ácido é a espécie química que tende a doar prótons (H⁺) e base é a espécie química que tende a receber prótons.

Considere as seguintes afirmações sobre ácidos, suas classificações e suas propriedades.

- I. O ácido $\rm H_3PO_4$ está presente no refrigerante e possui uma força maior que o ácido $\rm H_2SO_4.$
- II. Quanto maior o grau de ionização, mais forte será o ácido, sendo o HCl mais forte que o ${\rm H_2SO_4}.$

- III. A presença do oxigênio nos ácidos HNO_3 e HClO_4 é responsável por atuarem como oxidantes, sendo ambos hidrácidos por terem H
- IV. Os ácidos ${\rm H_3PO_2}$, ${\rm HNO_2}$ e HClO são monopróticos e a ionização ocorre em pequena extensão em meio aquoso.

Quais afirmações estão corretas?

- **a**) () I, II, III e IV.
- **b**) () Apenas II e IV.
- c) () Apenas III e IV.
- d) () Apenas I e II.
- e) () Apenas I e III.

Q.30 (1.25) - A decomposição de cloratos produz gás oxigênio e cloreto sólido. Em um experimento típico, 0,0843 gramas de um certo clorato foram decompostos por aquecimento, coletandose 30,00 mL de gás oxigênio sobre água a 23 °C. Sabe-se que 2,00 mols do clorato produzem 3,00 mols de gás oxigênio puro e que o barômetro do laboratório indicava uma pressão local de 751,0 mmHg. Dados: constante universal dos gases ideais: R = 62,3 L mmHg mol $^{-1}$ K $^{-1}$.

Assumindo que a pressão de vapor d'água a 23 °C é 21,1 mmHg, qual a massa molar do clorato que foi decomposto neste experimento?

- **a)** () 103.5 g mol^{-1}
- **b**) () 213.0 g mol^{-1}
- \mathbf{c}) () 122,6 g mol⁻¹
- **d**) () 106.5 g mol^{-1}
- e) () 244,1 g mol⁻¹